试卷装订纸

Academic Year 2023–2024, Semester 2

Biomedical Engineering Major, Class of 2021 / Biomedical

Engineering (Upgraded Undergraduate), Class of 2023

"Digital Signal Processing" Exam Paper A

Duration: 90 minutes, Closed-book Exam

Question		=	=	四	Total	Revi
Score	30	9	9	16	64	Si Boyu

應目	-	=	Ξ	四	总计	复核人
得分	- 30	9	9	16	64	司母字

Note: Students are expected to uphold the principles of honesty and integrity, abide by exam discipline, and refrain from cheating. Any violation of exam rules will be dealt with strictly in accordance with the "Shanghai University of Medicine and Health Sciences Student Disciplinary Regulations."

Score	Graded by
30	Wang
30	Xuan

Part 1: Multiple Choice Questions (20 questions, 2 points each, 40 points total. Select the correct answer; no points will be awarded for unanswered or incorrect answers.)

Question	1	2	3	4	5	6	7	8	9	10
Option	С	A	A	D	В	A	A	D	С	В
Question	11	12	13	14	15	16	17	18	19	20
Option	В	D	C	В	D	В	В	С	A	В

20	立送	- 6	-10)				1422			
題目	1	/ 2	, 3,	4	/5	6	, 7	8,	9	10 /
选项	C	A	A	VD/	B	A	A	D	0	B
題目	11	12	13	14	15	16	17	18	19	20
选项	D	D	0	R	D	R	B	-	Λ	QX

1. The sequences $x(n)=\{0, 1/2, 1, 3/2\}, h(n)=\{1, 1, 1\}$ are given. The length of their convolution sum is ()

A.4

B.5

C.6

D.7

Δ 16

Β.16π

2. $x(n) = A\cos(5\pi n/8 + \pi/6)$, The period of the sequence is

 C_{5}

 $D.5\pi$

3.If a continuous-time signal is ideally sampled and satisfies the Nyquist sampling theorem without spectral aliasing, it can be accurately reconstructed using a ()

A.Ideal low-pass filter B.Ideal high-pass filter C.Ideal band-pass filter D.Ideal band-stop filter 4. Which of the following systems is linear? (

$$A.y(n) = Re[x(n)]$$

$$B.y(n) = kx(n) + m$$

$$C.y(n) = [x(n)]^2$$

$$D.y(n) = \sum_{m=-\infty}^{n} x(m)$$

5. Which of the following linear time-invariant systems is non-causal? (

$$A. h(n) = \frac{1}{n!}u(n)$$

$$B. h(n) = -a^n u(-n-1)$$

C.
$$h(n) = 0.5^n u(n)$$

D.
$$h(n) = \delta(n)$$

6.Generally, the region of convergence for a () sequence is a circle with the radius equal to the smallest pole magnitude of X(z)

A.Left-sided

B.Right-sided

C.Two-sided

D.Causal

 $7.X(z)=1/(1-z^{-1}),|z|>1$, the x(n) is

A.u(n)

B.u(-n)

C.-u(n)

D.-u(-n-1)

8. Z[x(n)]=X(z), 1 < |z| < 2, the Z[x(-n)] is

A.X(-z),1 < |z| < 2

B.X(-z),0.5 < |z| < 1

C.X(1/z),1<|z|<2

D. X(1/z), 0.5 < |z| < 1

9. The imaginary axis in the S-plane corresponds to the () in the Z-plane (

A. Imaginary axis

B.Real axis

C.Unit circle

10. Given the signal $x(n) = \{4,3,2,1\}$ if $x_1(n) = x((n-2))_4 R_4(n)$, then $x_1(n)$ is

A. $x_1(n) = \{1,2,3,4\}$

B. $x_1(n) = \{2,1,4,3\}$

C. $x_1(n) = \{2,4,1,3\}$

D. $x_1(n) = \{4,3,2,1\}$

11. The expression for the DFT of a sequence is $X(k) = \sum_{n=0}^{N-1} x(n)W_N^{kn}$, From this, the length of the

sequence in the time domain and the interval between two adjacent frequency points in the transformed frequency domain are ()

A.
$$N, \frac{2\pi}{N}$$

B. $N-1, \frac{2\pi}{N}$ C. $N, \frac{2\pi}{N+1}$ D. $N-1, \frac{2\pi}{N+1}$

12. Which of the following statements about the properties of the Discrete Fourier Transform (DFT) is incorrect? (

A.The DFT is a linear transformation

B.The DFT has implicit periodicity

C. The DFT can be viewed as the sampling of the sequence's Z-transform on the unit circle

D.The DFT can precisely analyze the spectrum of continuous signals

13. Regarding the FFT, which of the following statements is incorrect? (

A. The FFT is a new type of transform

B.The FFT is a fast algorithm for the DFT

C. The FFT can be divided into time-decimation and frequency-decimation methods

D.The base-2 FFT requires the sequence length to be a power of 2

14. For an	N-point radix-	2 FFT with $N=2^L$ (where L is an integer	, the number of stages of butterf	ly
operations	required is ()			
A. N		B. L	C.2L	D.2N	
15. Which	of the follow	ing is not a commor	nly used indicator for	characterizing filter performance	in
practice? ()				
A.Fil	ter order B.	Maximum passband a	attenuation C.Minimur	n stopband attenuation D.Passbar	nd
cutoff frequ	iency				
16. For a	Butterworth lo	w-pass filter with or	der $N=2$, the number	r of poles in the magnitude-square	ed
function is	()				
A. 2		B. 4	C. 6	D. 8	
17. For a	Butterwortl	1 low-pass filter	with order N=4 时	, , the angular spacing between the	he
poles o	$f H_a(s) H_a(-s)$	on the S-plane is ()		
Α. π/	2	Β. π/4	C. π/6	D. π/8	
18. If a Bu	tterworth low-p	oass filter requires δ_p :	$=4dB$, then $H(j\Omega)$	Ω_p is ()	
A. 0.	2	B. 0.37	C. 0.63	D. 1	
19. Which	step in the desi	gn process of an IIR o	ligital filter is incorrect	?? ()	
				pass filter specifications	
B.	Design a no	rmalized analog lov	v-pass filter prototyp	e $H_{an}(s)$ based on the converte	ed
specification	ons				
C.Tra	nsform Ha(s)ir	nto H _{an} (s)			
D. Co	onvert the analog	g filter into a digital f	ilter		
20. Given	the difference	equation of a filter:	y(n) = -0.5y(n-1))+x(n) , its system function	is
()					
л И	$f(Z) = \frac{1}{1 + 0.5}$		B. $H(Z) = \frac{1}{1}$	1	
A. 11	$(Z) - \frac{1}{1 + 0.5}$	$\overline{SZ^{-1}}$	$D.\Pi(Z) = \frac{1}{1}$	$-0.5Z^{-1}$	
	7-	1		7 -1	
C. <i>H</i>	$(Z) = \frac{Z^{-1}}{1 + 0.5}$		D. $H(Z) = \frac{1}{2}$	<u>Z</u>	
	1+0.5	$^{\circ}Z$		$1 - 0.5Z^{-1}$	
Score	Graded by		` -	ions, 1 point each, 10 point nents and × for incorrect	S
	Bai		ior correct states	nemis and ^ for incorrect	
9		ones.)			
	Baodan	1 Compline o	continuous signal i	n the time demain regults in	
norio dio e	vtancian of its		_	n the time domain results in $()$	
-		spectrum in the free	-	(x	
-	_	ed by $y(n)=g(n)x(n)$,)
5.1 He regi	on or converg	ence for a right-side	ca sequence is the ex	terior of a circle with radius	

5.Increasing the data length N during spectrum analysis can improve physical resolution. Therefore, zero-padding at both ends of the signal can enhance physical resolution.

)

4. The Z-transform on the unit circle is equivalent to the Laplace transform of the sequence.

equal to the largest pole magnitude of X(z).

 $(\quad \textbf{x} \quad)$ 6. Spectral leakage and aliasing are inseparable. Leakage can cause aliasing because it spreads the

spectrum, potentially allowing high-frequency components to exceed the folding frequency, leading to distortion. ($\sqrt{}$)

7.A digital filter is a discrete-time system that can selectively remove certain frequency components from the input signal to achieve signal processing. ($\sqrt{}$)

8. The poles of the Butterworth low-pass filter function Ha(s)Ha(-s) are distributed on an elliptical circumference in the S-plane.

9. Mapping an analog filter to a digital filter involves transforming the Z-plane into the S-plane.

10.An FIR filter with $h(n) = \{0,1,3,1,2\}$ has linear phase.

得分 阅卷人 二、判断题。正确的在括号内打√。错误的在括号内打×。

日子子 (共10题, 每题1分, 共10分) 1.在时域对连续信号进行抽样, 在频域中所得频谱是原信号频谱的周期延拓。

2. y(n)=g(n)x(n)所代表的系统是非移变系统。

3. 右边序列的收敛域是以 X(z)的最大极点模值为半径的圆外。

4. 单位医上的 Z 变换就是序列的拉普拉斯变换。

在进行频谱分析的时候,增加数据长度N可以增加频谱的物理分辨率,因此为了增加物理分辨率可以对信号两端进行补零操作。

 類谱泄濁和频谱混叠是分不开的。湿漏会造成混叠,因为泄漏会导致频谱扩展,从而使 得最高频率成分有可能超过折叠频率,从而造成混叠失真。

7. 数字滤波器是一种离散时间系统,可以根据需要有选择性地滤除输入信号中的某些频率 成分,从而实现对输入信号的处理。

8. 巴特沃斯低通滤波器函数 Ha(s)Ha(-s)的极点分布在 s 平面的椭圆圆周上。

9. 模拟滤波器映射成数字滤波器,就是要寻找某种映射,将Z平面映射成S平面。

10. 一个 FIR 滤波器的 $h(n) = \{0, 1, 3, 1, 2\}$, 则该滤波器具有线性相位。

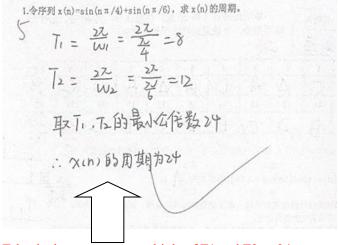
Score	Graded by
9	Li Xiaoou

Part 3: Fill-in-the-Blank Questions (15 questions, 2 points each, 30 points total)

得分	阅卷人	三、填空	(題 (ま	+ 15 题,	每题2分,	共30分)	
9 7	File On	(21)					

1.According to the Nyquist sampling theorem, to avoid distortion when sampling a band-limited signal, the sampling frequency f_s and the signal's highest frequency f_{max} must satisfy the relationship: $f_{max} \ge 2f_s$.

2.A linear system must satisfy both additivity and <u>decomposability</u> .


3. For a linear time-invariant system with impulse response $h(n) = a^n u(n)$, (where a is a real constant), the condition for system stability is $0 \le \sum_{n=0}^{\infty} a_n \le \infty$.

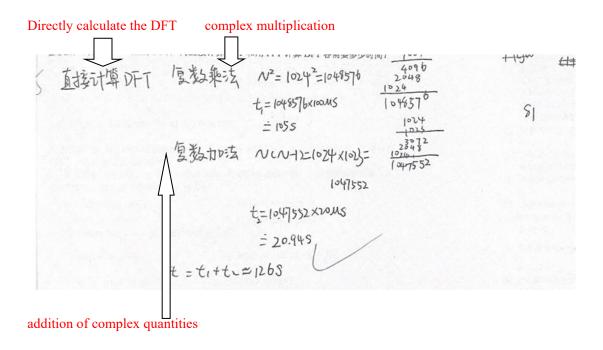
4. The bilateral Z-transform of a discrete sequence $x(n)$ is defined as $X(z)_{_}$	<u>.</u>
5.Methods for finding the inverse Z-transform include the contour in	ntegral method (residue
theorem), <u>partial fraction decomposition</u> , and the power series me	ethod (long division).
6.If $Z[x(n)]=X(z)$, then $Z[x(n+m)]=\underline{x(mz)}$.	
7. The Fourier transform of a sequence is defined as DTFT[x(n)]= $\sum_{n=1}^{N-1} \frac{1}{n} \left[\frac{1}{n} \left[\frac{1}{n} \right] + \frac{1}{n} \left[\frac{1}{n} \left[\frac{1}{n} \right] + \frac{1}{n} \left[\frac{1}{n} \right] + \frac{1}{n} \left[\frac{1}{n} \left[\frac{1}{n} \right] + \frac{1}{n} \left[\frac{1}{n} \left[\frac{1}{n} \right] + \frac{1}{n} \left[\frac{1}{n} \right] + \frac{1}{n} \left[\frac{1}{n} \left[\frac{1}{n} \right] + \frac{1}{n} \left$	$\sum_{n=0}^{\infty} x(n)e^{-j\omega n} .$
8. The N-point DFT of $\delta(n)_{is}$ 1.	
1. 从奈奎斯特采样定理可知,要使一个带限信号采样后不失真,采样频率f。与该信号的最高频率f _{max} 的关系为	
9.A continuous periodic time-domain signal is necessarily aperiod	lic discrete in the
frequency domain.	
10. The basic computational unit of the radix-2 FFT algorithm is the	
11. The magnitude response of a Butterworth filter depends of	
order N <u>increase</u> , the passband becomes flatter, and the transfer.	ransition band becomes
12.Common methods for mapping analog filters to digital filters include invariant method, the step-invariant method, and the bilinear transfil 13.Physically realizable filters typically include a between the passing the step-invariant method.	form method.
14.FIR filters can achieve strict <u>low frequency</u> characteristics w	•
magnitude responses.	willie allowing arolliary
15.In the basic IIR structures, direct Form II requires fewer <u>section</u>	than direct Form I
9. 一个连续周期的时域信号,其在频域必然是	
Score Graded by	

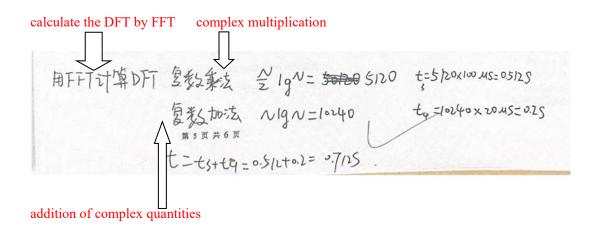
Part 4: Short Answer Questions (4 questions, 5 points each, 20 points total)

	3.64	where is		-	- H	44 00 113
得分	阅卷人	四、	简答题	(共4題,	母題5分,	共20分)
16	南茄	100	+4			

1. Given the sequence $x(n)=\sin(n\pi/4)+\sin(n\pi/6)$, determine its period.

Take the least common multiple of T1 and T2 as 24. Thus, the period of x(n) is 24.


2. For the sequence $x(n)=0.5^{[n]}$, find its Z-transform and region of convergence.


$$\chi_{(\Xi)} = \sum_{-\infty}^{\infty} \chi_{(n)} z^{-n}$$

$$= \sum_{-\infty}^{-1} 0.5^{-n} z^{-n} + \sum_{0}^{+\infty} 0.5^{n} z^{-n}$$

$$= \frac{0.5z}{1 - 0.5z} + \frac{1}{1 - 0.5z^{-1}}$$

3. If a general-purpose computer takes $100 \mu s$ to compute one complex multiplication and $20 \mu s$ for one complex addition, calculate the time required to compute a 1024-point DFT directly and using the FFT.

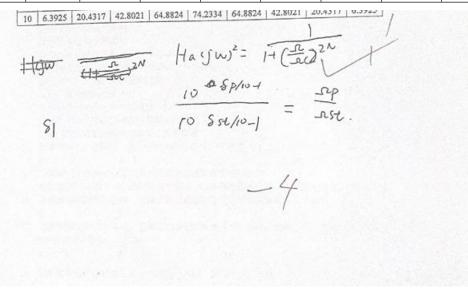

4. Design a Butterworth filter meeting the following specifications: passband edge frequency $\Omega_p=15\pi\ rad/s$, maximum passband attenuation $\delta_p=3dB$, stopband edge frequency $\Omega_{st}=25\pi\ rad/s$, and minimum stopband attenuation $\delta_{st}=20dB$. The coefficients of the normalized filter system function are provided in Table.

Table 1: Coefficients of the Normalized Filter System Function

	a ₁	a_2	a_3	a4	a_5	a ₆	a_7	ag	a ₉
1	1								

上海健康医学院考试试卷

2	1.4142								
3	2	2							
4	2.6131	3.4142	2.6131						
5	3.2361	5.2361	5.2361	3.2361					
6	3.8637	7.4641	9.1416	7.4641	3.8637				
7	4.494	10.0978	14.5918	14.5918	10.0978	4.4940			
8	5.1258	13.1371	21.8462	25.6884	21.8462	13.1371	5.1258		
9	5.7588	16.5817	31.1634	41.9864	41.9864	16.5817	31.1634	5.7588	
10	6.3925	20.4317	42.8021	64.8824	74.2334	64.8824	42.8021	20.4317	6.3925

